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Abstract

Recent analyses have shown that the Fokker-Planck (FP) equation is an asymptotic limit of the trans-
port equation given a forward-peaked scattering kernel satisfying certain constraints. In this paper we
study discretized transport equations in the same limit, both by asymptotic analysis and by numerical
testing. We show that spatially discretized discrete-ordinates transport solutions can be accurate in
this limit if and only if the scattering operator is handled in a certain non-standard way.

1 Introduction

The Fokker-Planck (FP) equation is a classical approximation to linear transport theory in optically
thick systems with highly anisotropic scattering. Recent analyses (Pomraning, 1992; B¨orgers, 1994)
have shown that the FP equation is an asymptotic limit of the transport equation; that is, that as scat-
tering cross sections become large and sufficiently forward-peaked, the transport solution approaches
the solution of the Fokker-Planck equation. In this paper we analyze discretized transport equations
in the same limit. We show that the leading-order solution to the discrete-ordinates (SN ) transport
equation satisfies a pseudospectral discretization of the FP equation, provided that the scattering term
is handled in a certain way, which we describe, and that the analytic transport solution limits to an
analytic FP solution. We also show that the leading-order solutions to several common one- and two-
dimensional spatial discretizations of theSN equations satisfy reasonable discretizations of the FP
equations, given the same provisions. We also provide numerical results; these invariably agree with
theoretical predictions. This work provides a theoretical foundation for the application ofSN methods
to certain problems with forward-peaked scattering.

2 Analytic Transport

We briefly review Pomraning’s asymptotic analysis (Pomraning, 1992) of the fully analytic trans-
port equation in the Fokker-Planck limit, which we restrict to the monoenergetic case. The analytic



transport equation in general geometry is:
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and where�s (�0) is the cross section for scattering through an angle whose cosine is�0. The pa-
rametercnorm is a normalization factor that depends onn, m, and the normalization chosen for the
definition ofYnm (
), and the parametersmL andmH depend on the geometry. Following Pomran-
ing, we make the following definitions and scalings:
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where�0 is the average scattering cosine,�̂sn and�̂a areO (1), Æ and are small, andh�i indicates a
typical value of a position-dependent variable. The idea is to examine what happens to the solution as
Æ approaches zero. Physically, this corresponds to a diminishing distance between scatters but also a
diminishing average scattering angle. These are balanced such that�tr isO (1) and independent ofÆ.

By rewriting the integral for�sn in terms ofy, expanding the integrand in a Taylor series about�0 = 1,
and truncating after the second term, Pomraning obtained the asymptotic form for� sn:
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The scattering kernel above is the Fokker-Planck kernel with an extraO () term. Substitution of this
expression into the transport equation leads (after some manipulation) to the following intermediate



result:
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Equation (5) is an equivalent form for the transport equation that is obtained when the scattering
cross section is asymptotically made forward-peaked. When the preceding analysis was reported by
Pomraning, he obtained the Fokker-Planck equation by noting that the term in braces in Eq. (5) is
identically zero. In order to illuminate the discrete analyses in subsequent sections, however, we wish
to proceed by a slightly more formal route. Our goal is to discern how the transport solution, (r;
),
behaves in the limit asÆ tends to zero. Therefore we propose the asymptotic ansatz:

 =  (0) + Æ (1) + Æ2 (2) + � � � ; (6a)

'nm = '(0)nm + Æ'(1)nm + Æ2'(2)nm + � � � ; (6b)

where we will be primarily interested in the leading-order term. We insert this ansatz into Eqs. (2)
and (5); after some manipulation we obtain the following requirement:

(I �MD) (0) = 0; (7)

whereM andD are the moments-to-discrete and discrete-to-moments operators, respectively:
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SinceM = D�1 for analytic transport this condition is satisfied in the current analysis; the net effect
then is to eliminate the term in braces in Eq. (5). Although this result is rather obvious in the problem
we are now analyzing, we will see later that the discrete version of Eq. (7) is not satisfied for some
discretizations.
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into Eq. (5) we obtain a Fokker-Planck equation with an extraO (=Æ) term:
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TheO (=Æ) term in Eq. (10) is significant. It is a function only of the scattering kernel. The FP
equation is not an asymptotic limit of the transport equation unless the scattering kernel is such that
 ! 0 more rapidly thanÆ! 0, i.e., such thatD

(1� �0)
2
E.

h(1 � ��0)i ! 0 (11)

as��0 ! 1. The Henyey-Greenstein kernel (Henyey, 1941), for example, does not have this limit. For
more discussion see (Pomraning, 1992) and (B¨orgers, 1994).

3 Spatially Analytic Discrete Ordinates

We now turn our attention to the discrete-ordinates discretization of the transport equation. The
standard discrete-ordinates version of the transport equation (1) is (with the asymptotic form of� sn

inserted):
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Here thewk and
k are the quadrature weights and directions, respectively, of a quadrature of order
N . In level-symmetric quadraturesK = N in 1D, K = N (N + 2) /2 in 2D, andK = N (N + 2)
in 3D. Note that the scattering order in Eq. (12) is truncated atN � 1. We insert the asymptotic
ansatz of Eqs. (6) into Eqs. (12) and (13); we obtain a discrete version of Eq. (7):

(I �MNDN ) 
(0) = 0; (14)

A sufficient (although not strictly necessary) condition for satisfying Eq. (14) is thatMNDN = I.
This will always be true ifMN andDN are inverses of each other (as in analytic transport), in which
case there are as many moments in the scattering expansion as there are discrete angles. It may or
may not be true if there are more moments than discrete angles. It cannot be true if there are fewer
moments than angles. (These assertions follow directly from the dimensions of the matrices.) In
one-dimensional slab and spherical geometry it will be true if and only if the quadrature set exactly
integrates polynomials of degree2N�2, as is the case with the Gauss-Legendre (GL) set. In standard
multidimensional implementations there are generally more discrete angles than scattering moments,
so in these casesMNDN 6= I. If MNDN 6= I, then Eq. (14) will be satisfied only if some other
(generally non-physical) constraints are met; if Eq.(14) is not satisfied then the asymptotic ansatz of
Eqs. (6) is not valid. In such a case there is noO (1) solution to Eqs. (12) and (13).



If we assume thatMNDN = I, the rest of the analysis and Eq. (9) yield:
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geometry will be described below). Thus, assuming thatO (=Æ) ! 0 as Æ ! 0, Eq. (15) is a
“pseudospectral” discretization (Gottlieb, 1984) of the angular variable in the exact FP equation.
(Pseudospectral methods use collocation to determine coefficients in a global function expansion.)

The above discussion indicates that the transformation from discrete values to angular moments and
back to discrete values should be the identity. If Eqs. (12) and (13) define the discrete-to-moments
and moments-to-discrete transformations, then we will not have the identity unless the quadrature set
is Gauss-Legendre in one-dimensional slab or spherical geometry. Given a different quadrature set
and/or multidimensional geometry, then, theSN method may not limit to a discretization of the FP
equation unless Eq. (12) and/or (13) is replaced.

Morel (Morel, 1989) reached the same conclusion via a completely different analysis, and offered
suggestions for replacing the offending equation(s). The simplest suggestion in one-dimensional slab
and spherical geometry is to use for~'n0 the exact moments of the (N � 1)-order polynomial,~ ,
that goes through the pointsf
k;  (r;
k)g ; i.e. to solve Eq. (2) exactly instead of using Eq. (13),
thereby redefiningDN to beM�1

N . Morel labeled this “Galerkin” quadrature, since he derived it by
means of a Galerkin weighting method. The use of the exact moments causes Eq. (14) to be satisfied
regardless of quadrature set, and Eq. (15) then follows.

In multidimensional geometries the Galerkin quadrature has a more complex definition. Recall
that there are fewer moments than discrete angles in standard multi-dimensional implementations
of the discrete-ordinates method. For example, level symmetric quadrature sets of orderN have
N (N + 2) /2 andN (N + 2) quadrature points in two and three dimensions, respectively, whereas
there areN (N + 1) /2 andN 2 spherical harmonics of orderN � 1 or less in the respective dimen-
sions (Lewis, 1993). In order to satisfy Eq. (14) in all circumstances we must first increase the
number of spherical harmonics in our flux expansion by using harmonics of higher orders. Morel
(Morel, 1989) and Reed (Reed, 1972) proposed suitable spherical harmonic interpolation spaces for
multidimensional geometries. For two-dimensional geometries the following interpolation space is
suggested: (
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The interpolation space suggested for three dimensions is:8>>>><
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The Galerkin quadrature is then defined by adjusting the limits of the summations in Eq. (12) in order
to augmentMN and then redefiningDN � M�1

N . As in the one-dimensional case Eq. (14) will be
satisfied regardless of the discrete angle set when the Galerkin treatment is used, and Eq. (15) then
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We remind ourselves that the conditionDN = M�1
N is certainly sufficient for obtaining the correct

FP limit, but it is not strictly necessary. We need only to satisfy Eq. (14), i.e. that~ be in the null
space ofI �MNDN . If MNDN 6= I, then certain angular eigenmodes cannot be present in a stable
solution, i.e.~ must be in a restricted subspace of the domain ofMNDN . It is entirely possible that
a clever selection of boundary conditions and sources could result in a solution that does not contain
any of the unstable modes; however, this would suggest that physically realistic boundary conditions
would give rise to unstable modes. Alternatively, one could filter out the unstable mode components
of the scattering source; this would stabilize the solution, but this will yield a different solution than
that obtained when exact integrations are used. Our recommendation is to avoid these complications
altogether by simply using the exact inverse ofMN .

4 Spatially Discretized Discrete Ordinates

We extend our asymptotic analysis now to discretizations of both angle and space. We will study
the diamond difference (DD), the linear discontinuous (LD) and the linear moments (LM) methods
(Alcouffe, 1979) as examples of spatial discretizations of the transport equation in one-dimensional
slab geometry. In two-dimensional Cartesian geometry we will examine several related finite element
methods on rectangles: the bilinear discontinuous (BLD), the lumped bilinear discontinuous (LBLD)
and the simple corner balance (SCB) methods (Adams, 1991; Adams, 1997).

The slab geometry DD-SN discretization of Eq. (1) is given in (Alcouffe, 1979). We substitute in the
asymptotic cross section of Eq. (4) and perform our asymptotic analysis. We obtain Eq. (14) as a
necessary condition for a leading-order solution. If we assume thatMNDN = I and that has no
O (Æ) components, we obtain
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Thus, given the above assumptions, the leading-order DD-SN solution satisfies a DD-pseudospectral
discretization of the FP equation. (It is no surprise that these assumptions are required, since they are
required even without spatial discretization.)

The slab geometry LD-SN discretization of Eq. (1) is given in (Alcouffe, 1979). Our analysis again
obtains Eq. (14) as a necessary condition. Given the usual assumptions, we obtain Eq. (18a) and the
following:
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where first spatial moments are defined:
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Therefore the leading-order LD-SN solution satisfies an LD-pseudospectral discretization of the FP
equation, given the previously stated constraints on the cross section and the quadrature.

The slab geometry LM-SN discretization of Eq. (1) is given in (Alcouffe, 1979). We again obtain
Eq. (14) by our analysis; the usual assumptions yield Eqs. (18a) and (19), i.e. the leading-order
LM-SN solution is identical to the leading-orderLD-SN solution: it satisfies an LD-pseudospectral
discretization of the FP equation. Once again, the constraints on the cross section and the quadrature
apply.

We have also studied some related discontinuous finite element (FEM) schemes in two-dimensional
Cartesian geometry: the bilinear discontinuous (BLD), the lumped bilinear discontinuous (LBLD)



and the simple corner balance (SCB) methods. These discretizations are given in (Adams, 1991;
Adams, 1997). We restrict our analysis to rectangular grids, in which case all of the above discretiza-
tions have the same form, differing only in the elements of certain matrices. Our asymptotic analysis
yields Eq. (14) as a necessary condition. The usual assumptions yield the result that the leading-order
FEM-SN solution satisfies a FEM-pseudospectral discretization of the FP equation.

5 Numerical Results

Now we present numerical results that support our Fokker-Planck asymptotic analyses. The specific
analytic problem we will examine in slab geometry is defined by Eqs. (1), (2), and

 (0; �) = Æ (1� �) ; 0 < � � 1; (21a)

 (L; �) = 0; �1 � � < 0; (21b)

�s (�0) = C (Æ) exp

�
�
1� �0
Æ

�
; �a = 0; (21c)

where the value ofC (Æ) is such that�tr = 0:1. This problem was examined in (B¨orgers, 1996). For
this cross section ! 2Æ2 asÆ ! 0, so theO (=Æ) term in Eq. (10) vanishes in the FP limit. Thus
the problem above is asymptotically described by the FP equation asÆ ! 0.

We examineSN solutions to this problem near the Fokker-Planck limit. For these studies we use
L = 20 andÆ = 0:001. As boundary conditions we use a quasi-Mark approximation to Eqs. (21a)
and (21b) in which all incoming fluxes are set to zero except at the quadrature direction�max closest
to � = 1; we set (0; �max) = w�1max, wherewmax is the corresponding quadrature weight from the
original quadrature set (not from the Galerkin quadrature defined by theM �1

N matrix). This boundary
condition has the effect of preserving the contribution to the boundary scalar flux from the beam in Eq.
(21a). Figure 1 shows the scalar flux throughout the slab as calculated by the LM-S8 method using
both the Lobatto-Galerkin and Gaussian quadratures. For these calculations we have used a very fine
spatial mesh (200 cells,�tr�x = 0:01) to minimize the effects of spatial discretization so that we
may concentrate on the effects of the angular differencing. TheseSN results compare favorably with
a pseudospectral Fokker-Planck solution of order 32, especially the Lobatto results. We remark that a
stable solution could not be obtained with the Lobatto set without the Galerkin quadrature treatment.
These results demonstrate the need to use discrete-to-moments and moments-to-discrete operators
that are inverses of each other, as well as the fact thatSN solutions limit to Fokker-Planck solutions
under proper conditions.

We now examine the effects of spatial discretization on theSN solutions. In Figure 2 we show LM-S8
solutions asÆ ! 0 for a mesh with only 10 cells. We also plot the corresponding LD-pseudospectral
Fokker-Planck solution as well as the highly refined FP solution that we showed in Figure 1. This
figure shows that asÆ ! 0, the spatially discreteS8 solution approaches the spatially discrete FP
solution that we predicted in the previous section, and that this solution is an excellent approximation
of the analytic solution.

Although we do not plot the results here, we have also performed similar calculations inx-y geometry.
As Æ ! 0, the DFEM-SN solution approaches the DFEM-FP solution of the same order, as predicted.
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Figure 1:S8 scalar fluxes,Æ = 0:001. (Lobatto-Galerkin and F-P are nearly coincident.)
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6 Conclusions

In summary, previous studies have shown that some transport problems with strongly forward-peaked
scattering are described by the Fokker-Planck equation, while others are not; this is a function strictly
of the scattering kernel. Our analyses of the spatially analytic discrete ordinates (SN ) equations reveal
that if the analytic solution does satisfy a FP equation and ifMNDN = I, whereMN is the moments-
to-discrete operator of theSN method andDN is the discrete-to-moments operator, then theSN solu-
tion will satisfy a pseudospectral discretization of the Fokker-Planck equation. IfMNDN 6= I, then
theSN method will fail in the FP limit unless additional constraints are satisfied. SinceMNDN 6= I in
most standardSN implementations, these methods will fail to produce reasonable results for forward-
peaked scattering problems unless their scattering treatments are modified. We also studied spatially
discretizedSN equations in the same limit. We found that if the spatially analyticSN solution satisfies
a pseudospectral FP equation, then the solutions to several spatially discreteSN schemes will satisfy
spatially discretized pseudospectral FP equations. These results provide some theoretical basis for the
use ofSN methods for problems with strongly forward-peaked scattering.
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